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© Conjugate gradient method

© Preconditioning



Conjugate gradient method
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© A minimization problem

Let A be a symmetric, positive definite (spd) matrix, i.e.,
o Ais symmetric, AT = A;
o xTAx > 0 for all x # 0.
If Ais spd, then it is invertible. Also, solving Ax = f is equivalent to solving the minimization

problem

1
min J(x) := min |:2XTAX - XTf:| ,

since if Ax* = f, then for any v # 0, we have
Jx*4+v)=(x* +v)TAX +v) — (x* +v)If

= —(x")TAx* + vT Ax* + %VTAV — (x)Tf —vTf

=N =N =

> S (x)TAx* — (x)Tf = J(xY).
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© Steepest descent method

Steepest descent finds the minimum of a function f(x) by generating a sequence of x* with
successively smaller values of J :

1. Given an initial guess x°, calculate V.J(x°).

2. Let d° = —VJ(x). Find a step size a > 0 that minimizes J(x" + ad?).
3. Set x!' = x° + ad”, where oy is the optimal step size above.

4. Repeat steps 1-3 until convergence.
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© Steepest descent method

Steepest descent finds the minimum of a function f(x) by generating a sequence of x* with
successively smaller values of J :

1. Given an initial guess x°, calculate V.J(x°).

2. Let d° = —VJ(x). Find a step size a > 0 that minimizes J(x" + ad?).

3. Set x!' = x° 4+ ad”, where oy is the optimal step size above.

4. Repeat steps 1-3 until convergence.
When J(x) = 1xTAx — x'f :

o VJ(x)=Ax—f = (i.e., the residual)

e To minimize J(x? + ad?) :

d
@J(xo +0ad®) =VJ(x"+ad®)-d° =0

(A(x° 4+ ad®) —£)-d° =0

_(f—Ax%)-d°  d°-d°
~ d%-Ad°  d0-Ad° (> )
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© Steepest descent method

To solve : Ax =f, A spd
0

Given : Initial guess x
FOR k=0,1,2,..., DO

1. Set d* = f — AxF

dk . dk
dk . Ad*
3. Set xFt1 = x¥ 4+ o, d*

2. Compute o =

END DO

Method is very slow, especially when the “aspect ratio” is large!
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© Steepest descent method
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0
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FOR k=0,1,2,..., DO

1. Set d* = f — AxF

dk . dk
dk . Ad*
3. Set xFt1 = x¥ 4+ o, d*

2. Compute o =

END DO

Method is very slow, especially when the “aspect ratio” is large!
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© Convergence of steepest descent

Define the condition number x(A) to be the ratio between the largest and smallest
eigenvalues of A4, i.e.,

)\max(A)
A) = Ty
K( ) )\min(A)
Theorem : the error e® := x* — x* of the steepest descent method satisfies

k(A) —1

(e et < <H(A) 1

k
) (e - Ae®)1/2,

k(A) | (k(A) —1)/(k(A) +1) | # its to reduce error by 10°

1 0 1
0.3333 13

10 0.8182 69
100 0.9802 691

1000 0.9980 6908 o
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© How to fix steepest descent

e Problem with steepest descent :

e the best descent direction is the one directly towards the solution
e gradients do not generally point in the direction of the solution
e directions tend to repeat and are not distinct enough

e Look again at the equation for determining step size :

VJ(x" + apd®) - d* =
(A(x* + akdk) —f)-d*=0
(Axk+1 ) dk
+1

Ae* dk—O

In 2D, the best direction is the one that's “A-orthogonal” to d* !
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© A-orthogonality

Instead of the usual dot product, we can define another inner product using A :
(u,v)a :=Au-v=u-Av.

The usual properties of dot products also hold :

e (u,v)a=(v,u)a

o (u,av)s =a(u,v)s = a(u,v)a

o (u,v+w)y=(u,v)a+ (u,w)y

e (u,v)4 <(w,u)a-(v,v)a (Cauchy-Schwarz)

e (u,u)g >0forallu0, and ||ul|a = (u,u)i‘/2 defines a norm

In this language, if we find a direction d**! that is orthogonal to d* with respect to the
A-inner product, then we get a method that converges in two steps in 2D !



© An “improved” steepest descent
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To solve : Ax =f, A spd

Given : Initial guess x°

FOR k=0,1,2,..., DO

1. Set d*F = f — AxF

Gl o g1
2. Compute ay, =

3. Set xF+1 = xF + q,d*

END DO

dF - AdF

To solve : Ax =f, A spd

Given : Initial guess x°

FORk=0,1,2,..., DO

1. Setr® =f — Ax*

k—1 f
2 setdh = ph = 3 Fod)a
=0 (dj7dJ)A
rk . dk
3. Compute Qp = m

4. Set xFt1 = x* + o, d*

END DO

d’

(Gram-Schmidt)




© “Improved” Steepest Descent = Conjugate Gradients IUK\E;RE

It works !

gonjugate Gradient, k(A) =20, ||e2°||=1.5701e-16

_
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© Krylov subspaces

To understand the behaviour of conjugate gradients, we study the following subspace :
Definition : Let x° be given and r® = f — Ax°. The k + 1st Krylov subspace as
Kri1(r®) = Span{r® Ar°, ..., AFr0}.

Assuming that d°,...,d*=1 # 0, we can show recursively that r* d* € ;11 (r?) using the
updating formulas

rF=f—AxF=f— A(xk*1 + ak_ldkfl) =rFl — qp_;Ad*?
k—1 ‘

d* =rk — chjdj.
=0

Moreover, Gram-Schmidt ensures that {d°,...,d*"'} is an A-orthogonal basis for Ky, (r?).
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© Optimality

Theorem : Suppose d°, ..., d*~! = 0. Then the x* produced by Conjugate Gradients (CG)
minimizes the error [|€*||4 = ||x* — x°||4 over all elements of the set x° + KCx(r?).

Proof :
1. xF € x% 4+ Kp(r?), since x* = x% 4+ pd® + - - - + a_1d* L.
2. We show that r* -d’ =0 for j =0,...,k — 1. For j = k — 1, we have

rk: . dk:—l _ (rk:—l o (lkflAdk_l) . dk—l
k—1 k—1
_ k-1 qk—1 r*—-d k=1 gqk—1y _
=0 AT - g (AdT ) =0

For 7 <k — 2, we have
rf.dl = (I‘k_l — ozk_lAdk_l) -d?

= " l.dd —ay AdFL-dT =0
by ind 0 by A-orth
= 0 by induction = y A-orthog. @
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© Proof of optimality (cont’d.)

3. If % is any other element in x° + 1, (r?), then % — x* € KCi(r?). Then

1% —x*1% = [le* + (& —x")|%
=(e" e s +2(ef,x — x4+ (3 —x

= (e*,e") 4 +24e" - (x —xM) + (x —xF, % — xF) 4.

kai - Xk)A

But Ae* = A(x* — x*) = Ax*¥ — f = —r*; since * — x* is a linear combination of
d®, ..., d*"1, the inner product in red vanishes. Thus, we have

% — <% = lle®[I% + 1% —x*1% > [le®|I%.

So the error is minimized for x*.

Conclusion : CG always finds the best solution within the search space! In particular, if the
exact solution x* lies in x% + KCj(r%), then the method converges in k iterations.
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© Breakdown

Problem : CG cannot continue if d¥ = 0. To solve : Ax =f, A spd

e If d* =0, then Given : Initial guess x°

k—1
) FOR k=0,1,2,..., DO
rf = E crjd?.
j=0

1. Setrk =f — AxF

. k—1 i
e Butrf.d’ =0for j=0,...,k—1, so 2 Set d¥ = rF _ (rkvdJ)Ad]‘
. Pt (d7,d7) 4
rforfF=0 = rfF=0. T
. 3 Compute o = m

e Breakdown only happens when x” = x*, i.e., 1 . N
when the method converges ! & Setx = 57 5 el

END DO




© Short recurrence

Problem : Gram-Schmidt is expensive.
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To solve : Ax =f, A spd

Given : Initial guess x"

FOR k=0,1,2,..., DO
1. Setrk =f — AxF
1

k j
k k (I‘ ’dJ)A j
. = - 7d‘]
2. Setd r E (@, ),

Jj=0
rk . d*
3. Compute o = m

4. Set xFt1 = x* + o, d*

END DO




© Short recurrence

Problem : Gram-Schmidt is expensive.
e We calculate

i+l
(f*,d)a=r"-  Ad rt Zﬁzdé

EX;j4+2(r%)
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To solve : Ax =f, A spd

Given : Initial guess x"

FOR k=0,1,2,..., DO

1. Setrk =f — AxF

k—1
2. Setd" =rF—
Jj=0
rk . dk
3. Compute o = m

4. Set xFt1 = x* + o, d*

END DO
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© Short recurrence

Problem : Gram-Schmidt is expensive. To solve : Ax =1, A spd
e We calculate Given : Initial guess x°
J+1
: : FOR k=0,1,2,..., DO
(*,d)a=r" Ad =r1F.)"Bd". —
€K 12(r0) £=0 1. Set vk =f — AxF
e Butrk.d® = ... —rk.dF1 —0. So if 2. Set (k. dt-1)
j <k —2 then (r¥,d’)4 = 0. dk:rk*mdkfl
e So there is only one non-zero B
o . . rk . d*
orthogonalization term in the Gram-Schmidt ! 3. Compute oy, = T

4. Set xFt1 = xF + o, d¥

END DO




© Standard form of CG
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Further simplifications lead to the “standard form"” (Hestenes & Stiefel 1952) :

To solve : Ax =f, A spd

Given : Initial guess x°

Initialize : d=1 =0
FOR k=0,1,2,..., DO

1. Setr¥ = f — AxF

4. Set xFt1 = xF 4 o, d¥

END DO

k k-1
k _ ok (r",d""")a
2. Setd =T _m
rk . dk
3. Compute o = m

dk—l

To solve : Ax =f, A spd

Given : Initial guess x°

Initialize : r =f — Ax%, d=1 =0
FOR k=0,1,2,..., DO

k .k
k_ Lk e ox k—1
1. Setd” =r +md
k. ok
r’.r
2. C t =——
ompute ax =

3. Set xF+1 = xF 4+ o, d*

4. Set r**t1 =rk — o, AdF

END DO




© Cost of CG

Each iteration of CG requires :
e One matrix-vector multiplication
AdF
e Two inner products r* - r¥, d¥ . Ad*
In some applications, the multiplication
Ad* can be done “matrix-free".

To solve : Ax =f, A spd

Given : Initial guess x

Initialize : " =f — Ax?, d~1 =0
FOR k=0,1,2,..., DO

k _ Lk k—1
1. Set d =r" + md
k k
ro-r
2. Compute Qp = m

3. Set xFt! = x* + o, d*

4. Set r**t1 =rkF — o, AdF

END DO
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© Convergence of CG

By the optimality property, we know that CG chooses x* € x° + K (r?) that minimizes
the error ||x* — x*|| 4.

If x* € x° + Kk (rY), then CG converges in k iterations.

e Assuming no breakdown until £ = n, we have dim K,,(r") = n, so K, (r’) = R" = CG
converges in at most n iterations (in exact arithmetic) !

e Another interpretation : at step k£, CG minimizes
le¥]la = ||x° — x* + (lin. comb. of d°,d*,...,d" )|
= ||le” + (lin. comb. of %, Ar®, ... AF"1r0)| 4
= ||le® + (lin. comb. of Ae®, A%e°, ..., A%e%)|
= lIp(A)e’l|4,

where pg(z) is a polynomial of degree < k with p;(0) = 1.
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© Convergence of CG

e In other words, CG chooses the best degree-k polynomial py(x) in order to minimize
I (A)e’]a !

e One can estimate the convergence of k steps of CG by choosing another (sub-optimal)
polynomial py which is small inside the interval [Amin, Amax] :

k

Theorem : If e¥ = x* — x* is the error of CG after k steps, then

k
||df||mz<%) €%,

where K(A) = Amax/Amin is the condition number of A.
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© Steepest Descent vs CG

Steepest Descent : k(A) (k(A) = 1)/(k(A) + 1) # its to reduce error by 10°
1 0 1
0.3333 13
10 0.8182 69
100 0.9802 691
1000 0.9980 6908

Conjugate Gradients : | x(A) | (v/k(A) —1)/(y/k(A) + 1) | # its to reduce error by 10°
0

1 1

2 0.1716 8

10 0.5195 21
100 0.8182 69
1000 0.9387 218
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© What about non-spd matrices ?

Symmetric but indefinite : MINRES (minimum residual, Paige & Saunders 1975)

e Short recurrence, constant cost per iteration
e Minimizes residual with respect to the 2-norm

e Non-symmetric : GMRES (Generalized MINRES, Saad & Schultz 1986)
e Minimizes residual with respect to the 2-norm
e No short recurrence !

e Other solvers : BiCG(Stab), QMR, CGS, ...

For convergence results, see Saad, lterative Methods for Sparse Linear Systems, 2nd ed.,
SIAM 2003.



Preconditioning
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© Preconditioning

e The convergence rates of CG, GMRES, etc. all depend on the condition number (A
e Idea of preconditioning : transform Ax = f into an equivalent problem :

e Left preconditioning : M ~'Ax = M~ !f

e Right preconditioning :

~—

AM 'y =f (with the substitution Mx =y)
e Two-sided preconditioning :

M;'AMpz'y = M;'f  (with the substitution Mpx =y)

M is called the preconditioner

e Goal : transform the spectrum of A into something more friendly to CG, GMRES, etc.
Ideally, M =~ A, so that M~YA ~ I has a small condition number

e M must be easy to solve = trade-off!



© Preconditioned CG

e Requires spd preconditioner M
e Example : for A=D+ L+ L7,
e Jacobi: M =D
e Gauss-Seidel : M =D+ L X
e Symmetric Gauss-Seidel :
M=D+LDYD+L)T «
e Mathematically equivalent to applying CG to

M7VPAMT 2y = MTYPE, MRy =x.

e Convergence depends on eigenvalues of
M—l/QAM—l/Q_

e No need to calculate M ~1/21 Only need to

solve linear systems of the form Mz* = r¥.
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To solve : Ax =1, A spd

Given : Initial guess x

0

Initialize : 9 = f — Ax%, d~1 =0
FOR k= 0,1,2,..., DO

1.
2.

Solve Mz* = rF.

k k
r-z
Setd*=z"+ —— = _gk-!
1. b1
rk . Zk:
Compute af = ———
PULe O = gk~ AaF

Set xFt1 = xF 4 o, d*

Set rFt! =k — o, Ad®

END DO




© Acceleration

Recall : For a stationary method of the form
Mx*tt = Nx* + f,

The error satisfies e = (M~'N)*e® = (I — M~1A)*e".
Letting &% = M'/2e", we see that the stationary method generates iterates that satisfy

ék _ pk(M_l/QAM_l/Z)éO,

where pi.(z) = (1 — x)*.
But CG generates the best polynomial p;, that minimizes ||e”| 4!

Therefore, PCG is an accelerator for the basic stationary method defined by M.

The same holds for GMRES, or any other method with an optimality property.



© Stationary vs PCG acceleration

e Solve 20 x 20 system Ax = f with

and f = (1,1,..., )T
e Stationary : Symmetric Gauss-Seidel
e Krylov : CG preconditioned with SGS

Residual norm

= = =Symmetric GS |
—PCG

20 30 40
Iterations



© Final remarks

If you have a good stationary method, using it as a preconditioner within Krylov methods
(PCG, GMRES, etc.) will make the convergence even faster.

PCG and GMRES do not require p(M~'N) < 1 to converge

e Some popular preconditioners (e.g. additive Schwarz with overlap) cannot be used as
stationary methods (because p(M ~1N) > 1), but are still effective as preconditioners

e Preconditioner design is as much an art as it is a science, especially for multiphysics
problems !
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