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Conjugate gradient method



± A minimization problem

Let A be a symmetric, positive definite (spd) matrix, i.e.,
• A is symmetric, AT = A ;
• xTAx > 0 for all x 6= 0.

If A is spd, then it is invertible. Also, solving Ax = f is equivalent to solving the minimization
problem

min
x
J(x) := min

x

[
1
2xTAx− xT f

]
,

since if Ax∗ = f , then for any v 6= 0, we have

J(x∗ + v) = 1
2(x∗ + v)TA(x∗ + v)− (x∗ + v)T f

= 1
2(x∗)TAx∗ + vTAx∗ + 1

2vTAv− (x∗)T f − vT f

>
1
2(x∗)TAx∗ − (x∗)T f = J(x∗).
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± Steepest descent method

Steepest descent finds the minimum of a function f(x) by generating a sequence of xk with
successively smaller values of J :
1. Given an initial guess x0, calculate ∇J(x0).
2. Let d0 = −∇J(x0). Find a step size α > 0 that minimizes J(x0 + αd0).
3. Set x1 = x0 + α0d0, where α0 is the optimal step size above.
4. Repeat steps 1–3 until convergence.

When J(x) = 1
2 xTAx− xT f :

• ∇J(x) = Ax− f =⇒ d0 = f −Ax0 (i.e., the residual)
• To minimize J(x0 + αd0) :

d

dα
J(x0 + αd0) = ∇J(x0 + αd0) · d0 = 0

(A(x0 + αd0)− f) · d0 = 0

α = (f −Ax0) · d0

d0 ·Ad0 = d0 · d0

d0 ·Ad0
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± Steepest descent method

To solve : Ax = f , A spd
Given : Initial guess x0

FOR k = 0, 1, 2, . . . , DO

1. Set dk = f −Axk

2. Compute αk = dk · dk

dk ·Adk

3. Set xk+1 = xk + αkdk

END DO

Steepest Descent, (A) =2, ||e20||=1.7584e-15
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Method is very slow, especially when the “aspect ratio” is large !
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± Steepest descent method

To solve : Ax = f , A spd
Given : Initial guess x0

FOR k = 0, 1, 2, . . . , DO

1. Set dk = f −Axk

2. Compute αk = dk · dk

dk ·Adk

3. Set xk+1 = xk + αkdk

END DO

Steepest Descent, (A) =20, ||e20||=0.011001
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± Convergence of steepest descent

Define the condition number κ(A) to be the ratio between the largest and smallest
eigenvalues of A, i.e.,

κ(A) = λmax(A)
λmin(A)

.
Theorem : the error ek := xk − x∗ of the steepest descent method satisfies

(ek ·Aek)1/2 ≤
(
κ(A)− 1
κ(A) + 1

)k

(e0 ·Ae0)1/2.

κ(A) (κ(A)− 1)/(κ(A) + 1) # its to reduce error by 106

1 0 1
2 0.3333 13
10 0.8182 69
100 0.9802 691
1000 0.9980 6908 4



± How to fix steepest descent

• Problem with steepest descent :
• the best descent direction is the one directly towards the solution
• gradients do not generally point in the direction of the solution
• directions tend to repeat and are not distinct enough

• Look again at the equation for determining step size :

∇J(xk + αkdk) · dk = 0
(A(xk + αkdk)− f) · dk = 0

(Axk+1 −Ax∗) · dk = 0
Aek+1 · dk = 0

In 2D, the best direction is the one that’s “A-orthogonal” to dk !
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± A-orthogonality

Instead of the usual dot product, we can define another inner product using A :

(u,v)A := Au · v = u ·Av.

The usual properties of dot products also hold :

• (u,v)A = (v,u)A

• (u, αv)A = α(u,v)A = α(u,v)A

• (u,v + w)A = (u,v)A + (u,w)A

• (u,v)2
A ≤ (u,u)A · (v,v)A (Cauchy-Schwarz)

• (u,u)A > 0 for all u 6= 0, and ‖u‖A = (u,u)1/2
A defines a norm

In this language, if we find a direction dk+1 that is orthogonal to dk with respect to the
A-inner product, then we get a method that converges in two steps in 2D !
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± An “improved” steepest descent

To solve : Ax = f , A spd
Given : Initial guess x0

FOR k = 0, 1, 2, . . . , DO

1. Set dk = f −Axk

2. Compute αk = dk · dk

dk ·Adk

3. Set xk+1 = xk + αkdk

END DO

To solve : Ax = f , A spd
Given : Initial guess x0

FOR k = 0, 1, 2, . . . , DO

1. Set rk = f −Axk

2. Set dk = rk −
k−1∑
j=0

(rk,dj)A

(dj ,dj)A
dj (Gram-Schmidt)

3. Compute αk = rk · dk

dk ·Adk

4. Set xk+1 = xk + αkdk

END DO
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± “Improved” Steepest Descent = Conjugate Gradients

It works !

Conjugate Gradient, (A) =20, ||e20||=1.5701e-16
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± Krylov subspaces

To understand the behaviour of conjugate gradients, we study the following subspace :

Definition : Let x0 be given and r0 = f −Ax0. The k + 1st Krylov subspace as

Kk+1(r0) = Span{r0, Ar0, . . . , Akr0}.

Assuming that d0, . . . ,dk−1 6= 0, we can show recursively that rk,dk ∈ Kk+1(r0) using the
updating formulas

rk = f −Axk = f −A(xk−1 + αk−1dk−1) = rk−1 − αk−1Adk−1

dk = rk −
k−1∑
j=0

ckjdj .

Moreover, Gram-Schmidt ensures that {d0, . . . ,dk−1} is an A-orthogonal basis for Kk(r0).

9



± Optimality

Theorem : Suppose d0, . . . ,dk−1 6= 0. Then the xk produced by Conjugate Gradients (CG)
minimizes the error ‖ek‖A = ‖xk − x0‖A over all elements of the set x0 +Kk(r0).

Proof :
1. xk ∈ x0 +Kk(r0), since xk = x0 + α0d0 + · · ·+ αk−1dk−1.
2. We show that rk · dj = 0 for j = 0, . . . , k − 1. For j = k − 1, we have

rk · dk−1 = (rk−1 − αk−1Adk−1) · dk−1

= rk−1 · dk−1 − rk−1 · dk−1

dk−1 ·Adk−1 (Adk−1 · dk−1) = 0.

For j ≤ k − 2, we have

rk · dj = (rk−1 − αk−1Adk−1) · dj

= rk−1 · dj︸ ︷︷ ︸
= 0 by induction

−αk−1 Adk−1 · dj︸ ︷︷ ︸
= 0 by A-orthog.

= 0.
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± Proof of optimality (cont’d.)

3. If x̂ is any other element in x0 +Kk(r0), then x̂− xk ∈ Kk(r0). Then

‖x̂− x∗‖2
A = ‖ek + (x̂− xk)‖2

A

= (ek, ek)A + 2(ek, x̂− xk)A + (x̂− xk, x̂− xk)A

= (ek, ek)A + 2Aek · (x̂− xk) + (x̂− xk, x̂− xk)A.

But Aek = A(xk − x∗) = Axk − f = −rk ; since x̂− xk is a linear combination of
d0, . . . ,dk−1, the inner product in red vanishes. Thus, we have

‖x̂− x∗‖2
A = ‖ek‖2

A + ‖x̂− xk‖2
A > ‖ek‖2

A.

So the error is minimized for xk.

Conclusion : CG always finds the best solution within the search space ! In particular, if the
exact solution x∗ lies in x0 +Kk(r0), then the method converges in k iterations.
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± Breakdown

Problem : CG cannot continue if dk = 0.
• If dk = 0, then

rk =
k−1∑
j=0

ckjdj .

• But rk · dj = 0 for j = 0, . . . , k − 1, so

rk · rk = 0 =⇒ rk = 0.

• Breakdown only happens when xk = x∗, i.e.,
when the method converges !

To solve : Ax = f , A spd
Given : Initial guess x0

FOR k = 0, 1, 2, . . . , DO

1. Set rk = f −Axk

2. Set dk = rk −
k−1∑
j=0

(rk,dj)A

(dj ,dj)A
dj

3. Compute αk = rk · dk

dk ·Adk

4. Set xk+1 = xk + αkdk

END DO
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± Short recurrence

Problem : Gram-Schmidt is expensive.

• We calculate

(rk,dj)A = rk · Adj︸︷︷︸
∈Kj+2(r0)

= rk ·
j+1∑
`=0

β`d`.

• But rk · d0 = · · · = rk · dk−1 = 0. So if
j ≤ k − 2, then (rk,dj)A = 0.

• So there is only one non-zero
orthogonalization term in the Gram-Schmidt !

To solve : Ax = f , A spd
Given : Initial guess x0

FOR k = 0, 1, 2, . . . , DO

1. Set rk = f −Axk

2. Set dk = rk −
k−1∑
j=0

(rk,dj)A

(dj ,dj)A
dj

3. Compute αk = rk · dk

dk ·Adk

4. Set xk+1 = xk + αkdk

END DO
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± Standard form of CG

Further simplifications lead to the “standard form” (Hestenes & Stiefel 1952) :

To solve : Ax = f , A spd
Given : Initial guess x0

Initialize : d−1 = 0
FOR k = 0, 1, 2, . . . , DO

1. Set rk = f −Axk

2. Set dk = rk − (rk,dk−1)A

(dk−1,dk−1)A
dk−1

3. Compute αk = rk · dk

dk ·Adk

4. Set xk+1 = xk + αkdk

END DO

=⇒

To solve : Ax = f , A spd
Given : Initial guess x0

Initialize : r0 = f −Ax0, d−1 = 0
FOR k = 0, 1, 2, . . . , DO

1. Set dk = rk + rk · rk

rk−1 · rk−1 dk−1

2. Compute αk = rk · rk

dk ·Adk

3. Set xk+1 = xk + αkdk

4. Set rk+1 = rk − αkAdk

END DO
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± Cost of CG

Each iteration of CG requires :
• One matrix-vector multiplication
Adk

• Two inner products rk · rk, dk ·Adk

In some applications, the multiplication
Adk can be done “matrix-free”.

To solve : Ax = f , A spd
Given : Initial guess x0

Initialize : r0 = f −Ax0, d−1 = 0
FOR k = 0, 1, 2, . . . , DO

1. Set dk = rk + rk · rk

rk−1 · rk−1 dk−1

2. Compute αk = rk · rk

dk ·Adk

3. Set xk+1 = xk + αkdk

4. Set rk+1 = rk − αkAdk

END DO
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± Convergence of CG

• By the optimality property, we know that CG chooses xk ∈ x0 +Kk(r0) that minimizes
the error ‖xk − x∗‖A.

• If x∗ ∈ x0 +Kk(r0), then CG converges in k iterations.
• Assuming no breakdown until k = n, we have dimKn(r0) = n, so Kn(r0) = Rn =⇒ CG
converges in at most n iterations (in exact arithmetic) !

• Another interpretation : at step k, CG minimizes

‖ek‖A = ‖x0 − x∗ + (lin. comb. of d0,d1, . . . ,dk−1)‖A

= ‖e0 + (lin. comb. of r0, Ar0, . . . , Ak−1r0)‖A

= ‖e0 + (lin. comb. of Ae0, A2e0, . . . , Ake0)‖A

= ‖pk(A)e0‖A,

where pk(x) is a polynomial of degree ≤ k with pk(0) = 1.
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± Convergence of CG

• In other words, CG chooses the best degree-k polynomial pk(x) in order to minimize
‖pk(A)e0‖A !

• One can estimate the convergence of k steps of CG by choosing another (sub-optimal)
polynomial p̂k which is small inside the interval [λmin, λmax] :

Theorem : If ek = xk − x∗ is the error of CG after k steps, then

‖ek‖A ≤ 2
(√

κ(A)− 1√
κ(A) + 1

)k

‖e0‖A,

where κ(A) = λmax/λmin is the condition number of A.
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± Steepest Descent vs CG

Steepest Descent : κ(A) (κ(A)− 1)/(κ(A) + 1) # its to reduce error by 106

1 0 1
2 0.3333 13
10 0.8182 69
100 0.9802 691
1000 0.9980 6908

Conjugate Gradients : κ(A) (
√
κ(A)− 1)/(

√
κ(A) + 1) # its to reduce error by 106

1 0 1
2 0.1716 8
10 0.5195 21
100 0.8182 69
1000 0.9387 218

18



± What about non-spd matrices ?

• Symmetric but indefinite : MINRES (minimum residual, Paige & Saunders 1975)
• Short recurrence, constant cost per iteration
• Minimizes residual with respect to the 2-norm

• Non-symmetric : GMRES (Generalized MINRES, Saad & Schultz 1986)
• Minimizes residual with respect to the 2-norm
• No short recurrence !

• Other solvers : BiCG(Stab), QMR, CGS, . . .
• For convergence results, see Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.,

SIAM 2003.
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Preconditioning



± Preconditioning

• The convergence rates of CG, GMRES, etc. all depend on the condition number κ(A).
• Idea of preconditioning : transform Ax = f into an equivalent problem :

• Left preconditioning : M−1Ax = M−1f
• Right preconditioning :

AM−1y = f (with the substitution Mx = y)

• Two-sided preconditioning :

M−1
L AM−1

R y = M−1
L f (with the substitution MRx = y)

• M is called the preconditioner
• Goal : transform the spectrum of A into something more friendly to CG, GMRES, etc.
• Ideally, M ≈ A, so that M−1A ≈ I has a small condition number
• M must be easy to solve =⇒ trade-off !
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± Preconditioned CG

• Requires spd preconditioner M
• Example : for A = D + L+ LT ,

• Jacobi : M = D ¢

• Gauss-Seidel : M = D + L m

• Symmetric Gauss-Seidel :
M = (D + L)D−1(D + L)T ¢

• Mathematically equivalent to applying CG to

M−1/2AM−1/2y = M−1/2f , M1/2y = x.

• Convergence depends on eigenvalues of
M−1/2AM−1/2.

• No need to calculate M−1/2 ! Only need to
solve linear systems of the form Mzk = rk.

To solve : Ax = f , A spd
Given : Initial guess x0

Initialize : r0 = f −Ax0, d−1 = 0
FOR k = 0, 1, 2, . . . , DO

1. Solve Mzk = rk.
2. Set dk = zk + rk · zk

rk−1 · zk−1 dk−1

3. Compute αk = rk · zk

dk ·Adk

4. Set xk+1 = xk + αkdk

5. Set rk+1 = rk − αkAdk

END DO
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± Acceleration

• Recall : For a stationary method of the form

Mxk+1 = Nxk + f ,

The error satisfies ek = (M−1N)ke0 = (I −M−1A)ke0.
• Letting ẽk = M1/2ek, we see that the stationary method generates iterates that satisfy

ẽk = pk(M−1/2AM−1/2)ẽ0,

where pk(x) = (1− x)k.
• But CG generates the best polynomial pk that minimizes ‖ek‖A !
• Therefore, PCG is an accelerator for the basic stationary method defined by M .
• The same holds for GMRES, or any other method with an optimality property.

22



± Stationary vs PCG acceleration

• Solve 20× 20 system Ax = f with

A =


2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2


and f = (1, 1, . . . , 1)T

• Stationary : Symmetric Gauss-Seidel
• Krylov : CG preconditioned with SGS

Convergence of SGS vs PCG
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± Final remarks

• If you have a good stationary method, using it as a preconditioner within Krylov methods
(PCG, GMRES, etc.) will make the convergence even faster.

• PCG and GMRES do not require ρ(M−1N) < 1 to converge

• Some popular preconditioners (e.g. additive Schwarz with overlap) cannot be used as
stationary methods (because ρ(M−1N) > 1), but are still effective as preconditioners

• Preconditioner design is as much an art as it is a science, especially for multiphysics
problems !
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